WANUGRAPE 4.0 Plataforma digital para la selección de portainjertos y fertirriego de la vid

Demostración del DSS sobre riego

Esta presentación es parte del proyecto de I+D+i (PDC2021-121210-C21), financiado por MICIN/AEI 10.13039/501100011033 y por la "Unión Europea NextGenerationEU/PTR.

Índice

- Modelo en el que se basa el DSS
- Datos para alimentar el modelo
- Aportaciones del equipo investigador
- Definición de umbrales
- Validación en parcelas demostrativas

Modelo en el que se basa el DSS

- Balance hídrico del suelo
- Basado en trabajos previos: Lebon et al. (2003), Riou et al. (1989), etc.
- Transpiración viña y evaporación suelo como procesos independientes

Ecuación básica:
$$TSW_d = \left(TSW_{d-1} + P_d - ES_d - TV_d\right)$$

Ecuación transpiración:
$$TV = TV_p = ETP \cdot \frac{R_{gv}}{(1-\alpha) \cdot R_g}$$

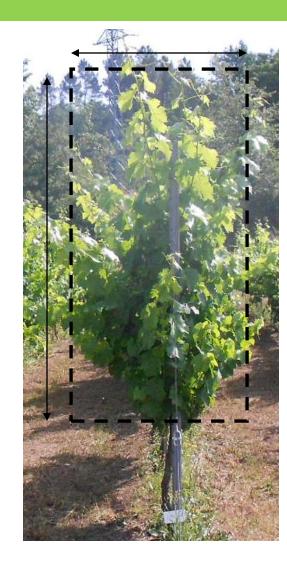
- **Salida original del modelo:**Proporción de agua disponible en el suelo a escala diaria

SIRO PUBLISHING

www.publish.csiro.au/journals/fpb

Functional Plant Biology, 2003, 30, 699-710

Modelling the seasonal dynamics of the soil water balance of vineyards

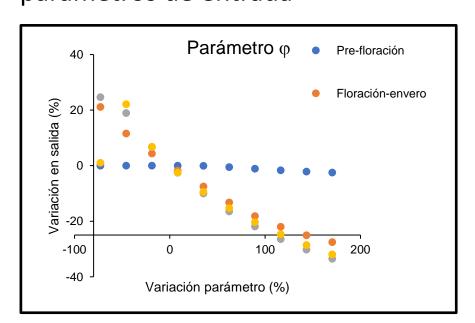

Eric Lebon^A, Vincent Dumas^B, Philippe Pieri^C and Hans R. Schultz^D

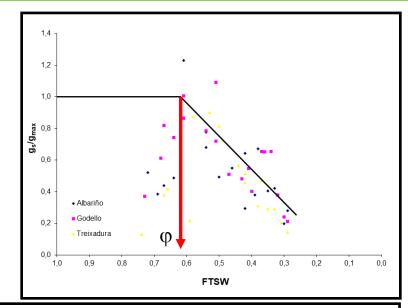
AUMR Écophysiologie des plantes sous stress environmentaux, LEPSE, INRA-ENSAM,
2 place Viala, F-34060 Montpellier cedex 1, France.

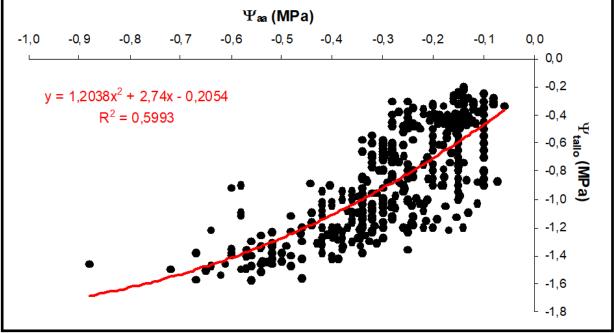
BUMR Vigne et Vin d'Alsace, INRA-Université Louis Pasteur Strasbourg,
28 rue de Herrlisheim BP 507, F-68021 Colmar cedex, France.

CUnité d'Agronomie, INRA-Centre de Recherches de Bordeaux,
71 avenue Edouard Bourlaux BP 81, F-33883 Villenave d'Ornon cedex, France.

Institut für Weinbau und Rebenzüchtung, Fachgebiet Weinbau, Forschungsanstalt, von Lade Straße 1,
D-65366 Geisenheim, Germany. Corresponding author; email: h.schultz@fa-gm.de


Parámetros de entrada


Entrada	Abreviatura	Unidades	Valor por defecto	Referencia					
Referidas al suelo									
Albedo del suelo	a _s	-	0,18	Allen et al. (1998)					
Parámetro referido al clima	b_1	-	16	Brisson y Perrier					
Parámetro referido al suelo	b_2	-	0,1	(1991)					
Umbral de evaporación acumulada	U	mm	2,7	Trambouze (1996)					
Umbral entre transpiración limitada e ilimitada	φ	-	0,4	Lebon et al. (2003)					
R	eferidas al viño	edo							
Orientación de las filas		Radianes	-						
Fecha brotación	Brot.	Día del año	91						
Distancia entre plantas		m	-	Introducida por el					
Distancia entre filas			-	usuario					
Altura máxima del dosel vegetal	H usu		usuario						
Anchura máxima del dosel vegetal	L		-						
Proporción de huecos en el dosel vegetal	P_{o}	-	-						
Albedo de la viña	a_v	-	0,2						
Integral térmica acumulada a partir del que el	THT _{max}	400							
dosel vegetal está totalmente formado		9.0	400	Lebon et al. (2003)					
Integral térmica acumulada a partir del que el	THT_{min}	°C	000	,					
dosel vegetal tiene la menor proporción de huecos			900						


Aportaciones del equipo investigador

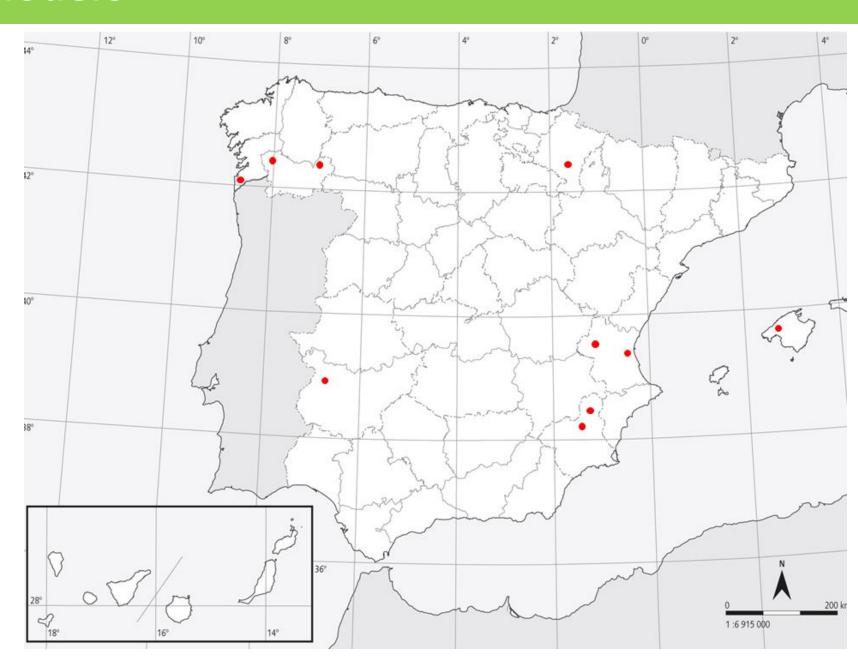
- Cálculo del agua disponible en el suelo al inicio de la campaña
- Ajuste de parámetros referidos al suelo y a la planta
- Transformación salida original del modelo en indicador comúnmente utilizado

Análisis de sensibilidad de las salidas a cambios en parámetros de entrada

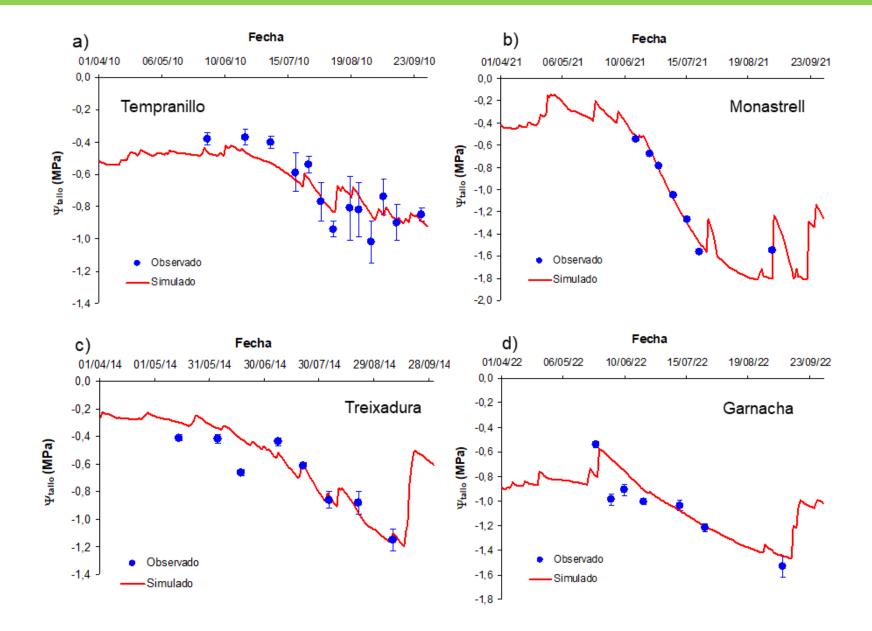
Definición de umbrales

- Se han utilizado datos procedentes de numerosos ensayos realizados en todo el territorio nacional
- Se dispone de una base de datos con 1381 réplicas
- 19 variedades (9 blancas y 10 tintas)
- Se han asignado niveles de estrés hídrico desde ausencia a severo a partir de valores obtenidos de la bibliografía

Stress change		Red cvs	White cvs	Response Ratio (RR)	Change (%)	95 % CI
a) Yield	1-2	12	12 54	,	12.57	[2.84, 23.22]
	2-3	144	157	+ to	-14.25	[-16.46, -11.98]
	3-4	196	223	***	-26.60	[-29.14, -23.98
	4-5	223	31		-4.96	[-8.83, -0.92]
b) Bunches per vine 1-2 2-3 3-4 4-5	12	54		7.36	[0.01, 15.24]	
	2-3	132	157	p	-8.80	[-10.90, -6.66]
	172	223	1-0-1	-6.74	[-8.50, -4.94]	
	4-5	199	31	-	-2.59	[-5.49, 0.40]
c) Bunch weight 1-2 2-3 3-4 4-5	1-2	12	54	, i o a	3.49	[-2.22, 9.52]
	2-3	132	157	1-MT	*** -16.11	[-17.78, -14.41]
	172	223	1	*** -14.78	[-17.24, -12.25]	
	4-5	199	31		*** 2.60	[-1.31, 6.67]

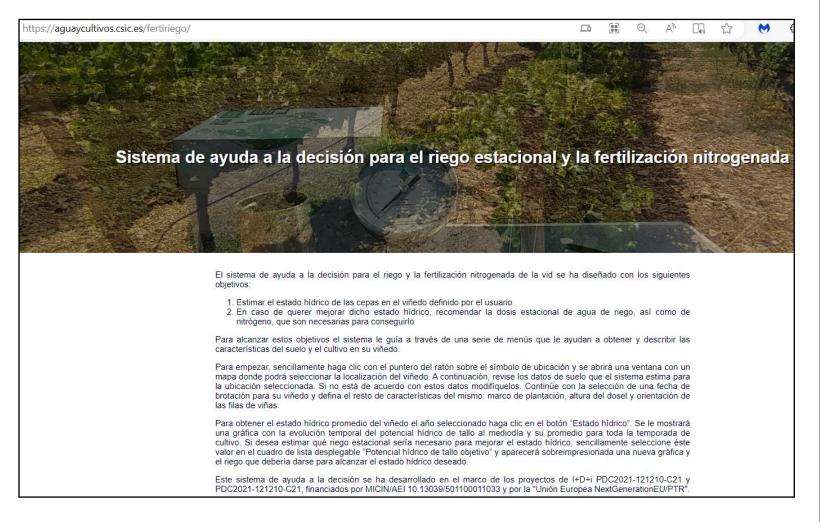

Parcelas validación modelo

El modelo se ha testado/validado en 10 viñedos


Total = 129 simulaciones

Incluyen:

- Diferentes condiciones edafoclimáticas
- Variedades blancas y tintas
- Un viñedo joven y 9 adultos
- Un viñedo en vaso y 9 en espaldera
- Diferentes estrategias de gestión del riego y del suelo


Parcelas validación modelo

https://aguaycultivos.csic.es/fertiriego/

